Monday, May 16, 2011

Mechanism of Enzyme Action [Lock and Key theory]

The basic mechanism by which enzymes catalyze chemical reactions begins with the binding of the substrate (or substrates) to the active site on the enzyme. The active site is the specific region of the enzyme which combines with the substrate. The binding of the substrate to the enzyme causes changes in the distribution of electrons in the chemical bonds of the substrate and ultimately causes the reactions that lead to the formation of products. The products are released from the enzyme surface to regenerate the enzyme for another reaction cycle.

The active site has a unique geometric shape that is complementary to the geometric shape of a substrate molecule, similar to the fit of puzzle pieces. This means that enzymes specifically react with only one or a very few similar compounds.

Lock and Key Theory:

The specific action of an enzyme with a single substrate can be explained using a Lock and Key analogy first postulated in 1894 by Emil Fischer. In this analogy, the lock is the enzyme and the key is the substrate. Only the correctly sized key (substrate) fits into the key hole (active site) of the lock (enzyme).

Smaller keys, larger keys, or incorrectly positioned teeth on keys (incorrectly shaped or sized substrate molecules) do not fit into the lock (enzyme). Only the correctly shaped key opens a particular lock. Watch the video below for better understanding on mechanism of enzyme action.


Read More

Meiosis

Meiosis begins with Interphase I. During this phase there is a duplication genetic material, DNA replication. Cells go from being 2N, 2C (N= chromosome content, C = DNA content) to 2N, 4C. Cells remain in this active phase 75% of the time. The chromatin remains in a nuclear envelope while a pair of centrioles lies inside a centrosome.


During Prophase I, the chromatin condenses into chromosomes, the nuclear envelope disappears, and a spindle apparatus begins to form. Each chromosome consists of a pair of chromatids connected by a centromere. Cells are now 4N, 4C. The major occurrence in this phase is the coupling of these homologous chromosomes. Two double-stranded chromosomes form a four-stranded tetrad. In some cases, there is crossing-over of the two middle strands, at a site called the chiasma, such that there is genetic recombination. This process is extremely important for creating genetic diversity.


In Metaphase I, the tetrads line up on the "equator" of the cell. The centrosome has replicated and one has moved to each pole. Microtubules that extend out of each centrosome attach to kinetochores in the center of each side of the tetrads that have lined up on the equator.



Read More

Mitosis

Mitosis is a process of cell division which results in the production of two daughter cells from a single parent cell. The daughter cells are identical to one another and to the original parent cell.

In a typical animal cell, mitosis can be divided into four principals stages:

  • Prophase: The chromatin, diffuse in interphase, condenses into chromosomes. Each chromosome has duplicated and now consists of two sister chromatids. At the end of prophase, the nuclear envelope breaks down into vesicles.
  • Metaphase: The chromosomes align at the equitorial plate and are held in place by microtubules attached to the mitotic spindle and to part of the centromere.
  • Anaphase: The centromeres divide. Sister chromatids separate and move toward the corresponding poles.
  • Telophase: Daughter chromosomes arrive at the poles and the microtubules disappear. The condensed chromatin expands and the nuclear envelope reappears. The cytoplasm divides, the cell membrane pinches inward ultimately producing two daughter cells (phase: Cytokinesis).
Read More